Learning with Drift Detection
نویسندگان
چکیده
Most of the work in machine learning assume that examples are generated at random according to some stationary probability distribution. In this work we study the problem of learning when the class-probability distribution that generate the examples changes over time. We present a method for detection of changes in the probability distribution of examples. A central idea is the concept of context: a set of contiguous examples where the distribution is stationary. The idea behind the drift detection method is to control the online error-rate of the algorithm. The training examples are presented in sequence. When a new training example is available, it is classified using the actual model. Statistical theory guarantees that while the distribution is stationary, the error wil decrease. When the distribution changes, the error will increase. The method controls the trace of the online error of the algorithm. For the actual context we define a warning level, and a drift level. A new context is declared, if in a sequence of examples, the error increases reaching the warning level at example kw, and the drift level at example kd. This is an indication of a change in the distribution of the examples. The algorithm learns a new model using only the examples since kw. The method was tested with a set of eight artificial datasets and a real world dataset. We used three learning algorithms: a perceptron, a neural network and a decision tree. The experimental results show a good performance detecting drift and also with learning the new concept. We also observe that the method is independent of the learning algorithm.
منابع مشابه
Concept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملHandling adversarial concept drift in streaming data
Classifiers operating in a dynamic, real world environment, are vulnerable to adversarial activity, which causes the data distribution to change over time. These changes are traditionally referred to as concept drift, and several approaches have been developed in literature to deal with the problem of drift handling and detection. However, most concept drift handling techniques, approach it as ...
متن کاملConcept Drift Detection Based on Anomaly Analysis
In online machine learning, the ability to adapt to new concept quickly is highly desired. In this paper, we propose a novel concept drift detection method, which is called Anomaly Analysis Drift Detection (AADD), to improve the performance of machine learning algorithms under non-stationary environment. The proposed AADD method is based on an anomaly analysis of learner’s accuracy associate wi...
متن کاملRegression Trees from Data Streams with Drift Detection
The problem of extracting meaningful patterns from time changing data streams is of increasing importance for the machine learning and data mining communities. We present an algorithm which is able to learn regression trees from fast and unbounded data streams in the presence of concept drifts. To our best knowledge there is no other algorithm for incremental learning regression trees equipped ...
متن کاملLearning Framework for Non-stationary and Imbalanced Data Stream
Abstract—Although learning on non-stationary data and imbalanced data have been extensively studied in the literature separately, however little work has been done to tackle the imbalanced issue on nonstationary data stream as the joint probability distribution between the data and classes changes with time and may results skewed class distribution. Especially in airlines delay detection, data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004